skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Ruyoing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Building upon recent advancements in AI‐driven atmospheric emulation, we present a novel framework for AI‐based ocean emulation, downscaling, and bias correction, with a specific focus on high‐resolution modeling of the regional ocean in the Gulf of Mexico. Emulating regional ocean dynamics poses distinct challenges due to intricate bathymetry, complex lateral boundary conditions, and inherent limitations of deep learning models, including instability and the potential for hallucinations. In this study, we introduce a deep learning framework that autoregressively integrates ocean surface variables at 8 km spatial resolution over the Gulf of Mexico, maintaining physical consistency over decadal time scales. Simultaneously, the framework downscales and bias‐corrects the outputs to 4 km resolution using a physics‐informed generative model. Our approach demonstrates short‐term predictive skill comparable to high‐resolution physics‐based simulations, while also accurately capturing long‐term statistical properties, including temporal mean and variability. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026